Dr. A.V.R.Reddy

1. Calculate nuclear density of 27 Al and 56 Fe if nuclear radius is given by the formula $\mathrm{R}=\mathrm{R} 0 \mathrm{~A} 1 / 3$ where R 0 is the nuclear radius constant and is equal to $1.4 \times 10^{-13} \mathrm{~cm}$.
2. Calculate the binding energy (B) for $6 \mathrm{Li}, 60 \mathrm{Ni}$ and 238 U given that mass excess for n, p, $6 \mathrm{Li}, 60 \mathrm{Ni}$ and 238 U are $8.071,7.289,14.087,-64.470$ and 47.307 MeV respectively. Also calculate the average binding energy (B/A) for these nuclides and comment on the variation of B / A as a function of mass number A.
3. Calculate the binding energy gain after adding a neutron to $15 \mathrm{O}, 16 \mathrm{O}$ and 239 Pu given that the masses of $\mathrm{n}, 15 \mathrm{O}, 16 \mathrm{O}, 17 \mathrm{O}, 239 \mathrm{Pu}$ and 240 Pu are $1.008665,15.003065,15.994914$, 16.999130, 239.052161 and 240.0538118 amu respectively. Explain the variation in the values.
4. Calculate the binding energy gain after adding a proton to $15 \mathrm{~N}, 16 \mathrm{O}$ and 239 Pu given that the masses of $\mathrm{p}, 15 \mathrm{~N}, 16 \mathrm{O}, 17 \mathrm{~F}, 239 \mathrm{Pu}$ and 240 Am are $1.00782543,15.0001095$, $15.994914,17.002096,239.052161$ and 240.055229 amu respectively.
5. Calculate the binding energy gain after adding an α particle to 9 Be and 235 U given that the masses of $\alpha, 9 \mathrm{Be}, 13 \mathrm{C}, 235 \mathrm{U}$ and 239 Pu are $4.002603,9.012183,13.003355$, 235.043927 and 239.052161 amu respectively. Compare the values obtained and comment on alpha decay.
6. Calculate the binding energy for $6 \mathrm{Li}, 60 \mathrm{Ni}$ and 238 U using semi-empirical mass formula and compare the results with those obtained in Q2.
7. Calculate the volume energy (that represents nuclear attractive forces) and coulomb energy (repulsive forces) for $4 \mathrm{He}, 12 \mathrm{C}, 60 \mathrm{Ni}, 137 \mathrm{Ba}, 151 \mathrm{Eu}, 182 \mathrm{~W}, 197 \mathrm{Au}, 206 \mathrm{~Pb}, 238 \mathrm{U}, 252 \mathrm{Cf}$, 257 Fm and 264 Ha . Based on this, explain why the periodic table cannot be extended indefinitely.
8. Beta decay energies associated with 131 Te and 131 I are 2.16 and 0.97 MeV respectively. Calculate the expected beta decay energy in the β decay of $131 \mathrm{Sb} \rightarrow 131 \mathrm{Te}$.
9. Based on the single particle shell model, calculate the ground state spin and parity for the following nuclei. (a) 12 C , (b) 13 C , (c) 39 Ar , (d) 40 Cl and (e) 196 Pt .
10. Based on the shell model, the expected spin of 137 Ba is $11 / 2$ and the observed spin is $3 / 2$. Explain why?
